195 research outputs found

    The Magnetic Field of L1544: I. Near-Infrared Polarimetry and the Non-Uniform Envelope

    Full text link
    The magnetic field (B-field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B-field. NIR linear polarization measurements of over 1,700 stars were obtained in the H-band and 201 of these were also measured in the K-band. The NIR BSP properties are correlated with reddening, as traced using the RJCE (H-M) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarization position angles change at the location of the cloud and exhibit their lowest dispersion of position angles there, offering strong evidence that NIR polarization traces the plane-of-sky B-field of L1544. In this paper, the uniformity of the plane-of-sky B-field in the envelope region of L1544 is quantitatively assessed. This allowed evaluating the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the envelope radio Zeeman observations, as in Crutcher et al. (2009). In L1544, the NIR BSP shows the envelope B-field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B-field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.Comment: 16 pages, 9 figures; accepted for publication in The Astrophysical Journa

    Extreme Starlight Polarization in a Region with Highly Polarized Dust Emission

    Get PDF
    Galactic dust emission is polarized at unexpectedly high levels, as revealed by Planck. The origin of the observed ≃20%\simeq 20\% polarization fractions can be identified by characterizing the properties of optical starlight polarization in a region with maximally polarized dust emission. We measure the R-band linear polarization of 22 stars in a region with a submillimeter polarization fraction of ≃20\simeq 20%. A subset of 6 stars is also measured in the B, V and I bands to investigate the wavelength dependence of polarization. We find that starlight is polarized at correspondingly high levels. Through multiband polarimetry we find that the high polarization fractions are unlikely to arise from unusual dust properties, such as enhanced grain alignment. Instead, a favorable magnetic field geometry is the most likely explanation, and is supported by observational probes of the magnetic field morphology. The observed starlight polarization exceeds the classical upper limit of [pV/E(B−V)]max=9\left[p_V/E\left(B-V\right)\right]_{\rm max} = 9%mag−1^{-1} and is at least as high as 13%mag−1^{-1} that was inferred from a joint analysis of Planck data, starlight polarization and reddening measurements. Thus, we confirm that the intrinsic polarizing ability of dust grains at optical wavelengths has long been underestimated.Comment: Accepted by A&AL, data to appear on CDS after publication. 6 page

    Protostar Formation in Magnetic Molecular Clouds beyond Ion Detachment: III. A Parameter Study

    Get PDF
    In two previous papers we formulated and solved, for a fiducial set of free parameters, the problem of the formation and evolution of a magnetically supercritical core inside a magnetically subcritical parent cloud. In this paper we present a parameter study to assess the sensitivity of the results (1) to the density at which the equation of state becomes adiabatic; (2) to the initial mass-to-flux ratio of the parent cloud; and (3) to ionization by radioactive decay of different nuclei (40K and 26Al) at high densities (number density > 10^12 particles per cubic cm). We find that (1) the results depend only slightly on the density at which the onset of adiabaticity occurs; (2) memory of the initial mass-to-flux ratio is completely lost at late times, which emphasizes the relevance of this work, idependently of the adopted theory of core formation; and (3) the precise source of radioactive ionization alters the degree of attachment of the electrons to the field lines (at high densities), and the relative importance of ambipolar diffusion and Ohmic dissipation in reducing the magnetic flux of the protostar. The value of the magnetic field at the end of the runs is insensitive to the values of the free parameters and in excellent agreement with meteoritic measurements of the protosolar nebula magnetic field. The magnetic flux problem of star formation is resolved for at least strongly magnetic newborn stars. A complete detachment of the magnetic field from the matter is unlikely. The formation of a "magnetic wall" (with an associated magnetic shock) is independent of the assumed equation of state, although the process is enhanced and accelerated by the formation of a central hydrostatic core.Comment: 17 pages, 14 figures, emulateapj; accepted for publication in the Astrophysical Journa

    Lagrangian characterization of sub-Alfv\'enic turbulence energetics

    Full text link
    The energetics of strongly magnetized turbulence has so far resisted all attempts to understand them. Numerical simulations of compressible turbulence reveal that kinetic energy can be orders of magnitude larger than fluctuating magnetic energy. We solve this lack-of-balance puzzle by calculating the energetics of compressible and sub-Alfv\'enic turbulence based on the dynamics of coherent cylindrical fluid parcels. Using a Lagrangian formulation, we prove analytically that the bulk of the magnetic energy transferred to kinetic is the energy stored in the coupling between the initial and fluctuating magnetic field. The analytical relations are in striking agreement with numerical data, up to second order terms.Comment: 16 pages, 1 figure, submitted, comments welcom
    • …
    corecore